Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Planet gaps in the dust layer of 3D protoplanetary disks: II. Observability with ALMA

Identifieur interne : 005998 ( Main/Exploration ); précédent : 005997; suivant : 005999

Planet gaps in the dust layer of 3D protoplanetary disks: II. Observability with ALMA

Auteurs : J.-F. Gonzalez [France] ; C. Pinte [France] ; S. T. Maddison [Australie] ; F. Menard [France] ; L. Fouchet [Suisse]

Source :

RBID : Pascal:13-0057302

Descripteurs français

English descriptors

Abstract

Context. The Atacama Large Millimeter/submillimeter Array (ALMA) will have the necessary resolution to observe a planetary gap created by a Jupiter-mass planet in a protoplanetary disk. Because it will observe at submillimeter and millimeter wavelengths, grains in the size range 10 μm to 1 cm are relevant for the thermal emission. For the standard parameters of a T Tauri disk, most grains of this size range are weakly coupled to the gas (leading to vertical settling and radial migration) and the common approximation of well-mixed gas and dust does not hold. Aims. We provide predictions for ALMA observations of planet gaps that account for the specific spatial distribution of dust that results from consistent gas+dust dynamics. Methods. In a previous work, we ran full 3D, two-fluid Smoothed Particle Hydrodynamics (SPH) simulations of a planet embedded in a gas+dust T Tauri disk for different planet masses and grain sizes. In this work, the resulting dust distributions are passed to the Monte Carlo radiative transfer code MCFOST to construct synthetic images in the ALMA wavebands. We then use the ALMA simulator to produce images that include thermal and phase noise for a range of angular resolutions, wavelengths, and integration times, as well as for different inclinations, declinations and distances. We also produce images which assume that gas and dust are well mixed with a gas-to-dust ratio of 100 to compare with previous ALMA predictions, all made under this hypothesis. Results. Our findings clearly demonstrate the importance of correctly incorporating the dust dynamics. We show that the gap carved by a 1 MJ planet orbiting at 40 AU is visible with a much higher contrast than the well-mixed assumption would predict. In the case of a 5 MJ planet, we clearly see a deficit in dust emission in the inner disk, and point out the risk of interpreting the resulting image as that of a transition disk with an inner hole if observed in unfavorable conditions. Planet signatures are fainter in more distant disks but declination or inclination to the line-of-sight have little effect on ALMA's ability to resolve the gaps. Conclusions. ALMA has the potential to see signposts of planets in disks of nearby star-forming regions. We present optimized observing parameters to detect them in the case of 1 and 5 Mj planets on 40 AU orbits.


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Planet gaps in the dust layer of 3D protoplanetary disks: II. Observability with ALMA</title>
<author>
<name sortKey="Gonzalez, J F" sort="Gonzalez, J F" uniqKey="Gonzalez J" first="J.-F." last="Gonzalez">J.-F. Gonzalez</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Université de Lyon, 69003 Lyon, France; Université Lyon 1, Observatoire de Lyon, 9 avenue Charles André, 69230 Saint-Genis Laval, France; CNRS, UMR 5574, Centre de Recherche Astrophysique de Lyon, France; École Normale Supérieure de Lyon</s1>
<s2>69007 Lyon</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>69007 Lyon</wicri:noRegion>
<placeName>
<settlement type="city">Lyon</settlement>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Rhône-Alpes</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pinte, C" sort="Pinte, C" uniqKey="Pinte C" first="C." last="Pinte">C. Pinte</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>UJF-Grenoble 1/CNRS-INSU, Institut de Planétologie et d'Astrophysique de Grenoble, UMR 5274</s1>
<s2>38041 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>38041 Grenoble</wicri:noRegion>
<placeName>
<settlement type="city">Grenoble</settlement>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Rhône-Alpes</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Maddison, S T" sort="Maddison, S T" uniqKey="Maddison S" first="S. T." last="Maddison">S. T. Maddison</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Centre for Astrophysics and Supercomputing, Swinburne Institute of Technology, PO Box 218</s1>
<s2>Hawthorn, VIC 3122</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Hawthorn, VIC 3122</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Menard, F" sort="Menard, F" uniqKey="Menard F" first="F." last="Menard">F. Menard</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>UJF-Grenoble 1/CNRS-INSU, Institut de Planétologie et d'Astrophysique de Grenoble, UMR 5274</s1>
<s2>38041 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>38041 Grenoble</wicri:noRegion>
<placeName>
<settlement type="city">Grenoble</settlement>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Rhône-Alpes</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fouchet, L" sort="Fouchet, L" uniqKey="Fouchet L" first="L." last="Fouchet">L. Fouchet</name>
<affiliation wicri:level="4">
<inist:fA14 i1="04">
<s1>Physikalisches Institute, Universität Bern</s1>
<s2>3012 Bern</s2>
<s3>CHE</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<placeName>
<settlement type="city">Berne</settlement>
<region type="région" nuts="3">Canton de Berne</region>
<settlement type="city">Berne</settlement>
</placeName>
<orgName type="university">Université de Berne</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">13-0057302</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 13-0057302 INIST</idno>
<idno type="RBID">Pascal:13-0057302</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000C97</idno>
<idno type="wicri:Area/PascalFrancis/Curation">005167</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">000E56</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">000E56</idno>
<idno type="wicri:doubleKey">0004-6361:2012:Gonzalez J:planet:gaps:in</idno>
<idno type="wicri:Area/Main/Merge">005C91</idno>
<idno type="wicri:Area/Main/Curation">005998</idno>
<idno type="wicri:Area/Main/Exploration">005998</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Planet gaps in the dust layer of 3D protoplanetary disks: II. Observability with ALMA</title>
<author>
<name sortKey="Gonzalez, J F" sort="Gonzalez, J F" uniqKey="Gonzalez J" first="J.-F." last="Gonzalez">J.-F. Gonzalez</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Université de Lyon, 69003 Lyon, France; Université Lyon 1, Observatoire de Lyon, 9 avenue Charles André, 69230 Saint-Genis Laval, France; CNRS, UMR 5574, Centre de Recherche Astrophysique de Lyon, France; École Normale Supérieure de Lyon</s1>
<s2>69007 Lyon</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Rhône-Alpes</region>
<settlement type="city">Lyon</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pinte, C" sort="Pinte, C" uniqKey="Pinte C" first="C." last="Pinte">C. Pinte</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>UJF-Grenoble 1/CNRS-INSU, Institut de Planétologie et d'Astrophysique de Grenoble, UMR 5274</s1>
<s2>38041 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Rhône-Alpes</region>
<settlement type="city">Grenoble</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Maddison, S T" sort="Maddison, S T" uniqKey="Maddison S" first="S. T." last="Maddison">S. T. Maddison</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Centre for Astrophysics and Supercomputing, Swinburne Institute of Technology, PO Box 218</s1>
<s2>Hawthorn, VIC 3122</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Hawthorn, VIC 3122</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Menard, F" sort="Menard, F" uniqKey="Menard F" first="F." last="Menard">F. Menard</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>UJF-Grenoble 1/CNRS-INSU, Institut de Planétologie et d'Astrophysique de Grenoble, UMR 5274</s1>
<s2>38041 Grenoble</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>38041 Grenoble</wicri:noRegion>
<placeName>
<settlement type="city">Grenoble</settlement>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Rhône-Alpes</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fouchet, L" sort="Fouchet, L" uniqKey="Fouchet L" first="L." last="Fouchet">L. Fouchet</name>
<affiliation wicri:level="4">
<inist:fA14 i1="04">
<s1>Physikalisches Institute, Universität Bern</s1>
<s2>3012 Bern</s2>
<s3>CHE</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<placeName>
<settlement type="city">Berne</settlement>
<region type="région" nuts="3">Canton de Berne</region>
<settlement type="city">Berne</settlement>
</placeName>
<orgName type="university">Université de Berne</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Astronomy and astrophysics : (Berlin. Print)</title>
<title level="j" type="abbreviated">Astron. astrophys. : (Berl., Print)</title>
<idno type="ISSN">0004-6361</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Astronomy and astrophysics : (Berlin. Print)</title>
<title level="j" type="abbreviated">Astron. astrophys. : (Berl., Print)</title>
<idno type="ISSN">0004-6361</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Dynamics</term>
<term>Gas to dust ratio</term>
<term>Grain size</term>
<term>Jupiter planet</term>
<term>Nearby stars</term>
<term>Numerical method</term>
<term>Orbits</term>
<term>Phase noise</term>
<term>Planetary system</term>
<term>Proto planetary nebula</term>
<term>Radiative transfer</term>
<term>Smoothed particle hydrodynamics method</term>
<term>Spatial distribution</term>
<term>Stellar formation region</term>
<term>Thermal noise</term>
<term>Weak coupling</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Planète Jupiter</term>
<term>Nébuleuse proto planétaire</term>
<term>Grosseur grain</term>
<term>Couplage faible</term>
<term>Répartition spatiale</term>
<term>Dynamique</term>
<term>Méthode SPH</term>
<term>Transfert radiatif</term>
<term>Bruit thermique</term>
<term>Bruit phase</term>
<term>Rapport gaz poussière</term>
<term>Etoile proche</term>
<term>Région formation stellaire</term>
<term>Orbite</term>
<term>Méthode numérique</term>
<term>Système planétaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Context. The Atacama Large Millimeter/submillimeter Array (ALMA) will have the necessary resolution to observe a planetary gap created by a Jupiter-mass planet in a protoplanetary disk. Because it will observe at submillimeter and millimeter wavelengths, grains in the size range 10 μm to 1 cm are relevant for the thermal emission. For the standard parameters of a T Tauri disk, most grains of this size range are weakly coupled to the gas (leading to vertical settling and radial migration) and the common approximation of well-mixed gas and dust does not hold. Aims. We provide predictions for ALMA observations of planet gaps that account for the specific spatial distribution of dust that results from consistent gas+dust dynamics. Methods. In a previous work, we ran full 3D, two-fluid Smoothed Particle Hydrodynamics (SPH) simulations of a planet embedded in a gas+dust T Tauri disk for different planet masses and grain sizes. In this work, the resulting dust distributions are passed to the Monte Carlo radiative transfer code MCFOST to construct synthetic images in the ALMA wavebands. We then use the ALMA simulator to produce images that include thermal and phase noise for a range of angular resolutions, wavelengths, and integration times, as well as for different inclinations, declinations and distances. We also produce images which assume that gas and dust are well mixed with a gas-to-dust ratio of 100 to compare with previous ALMA predictions, all made under this hypothesis. Results. Our findings clearly demonstrate the importance of correctly incorporating the dust dynamics. We show that the gap carved by a 1 M
<sub>J</sub>
planet orbiting at 40 AU is visible with a much higher contrast than the well-mixed assumption would predict. In the case of a 5 M
<sub>J</sub>
planet, we clearly see a deficit in dust emission in the inner disk, and point out the risk of interpreting the resulting image as that of a transition disk with an inner hole if observed in unfavorable conditions. Planet signatures are fainter in more distant disks but declination or inclination to the line-of-sight have little effect on ALMA's ability to resolve the gaps. Conclusions. ALMA has the potential to see signposts of planets in disks of nearby star-forming regions. We present optimized observing parameters to detect them in the case of 1 and 5 M
<sub>j</sub>
planets on 40 AU orbits.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
<li>Suisse</li>
</country>
<region>
<li>Auvergne-Rhône-Alpes</li>
<li>Canton de Berne</li>
<li>Rhône-Alpes</li>
</region>
<settlement>
<li>Berne</li>
<li>Grenoble</li>
<li>Lyon</li>
</settlement>
<orgName>
<li>Université de Berne</li>
</orgName>
</list>
<tree>
<country name="France">
<region name="Auvergne-Rhône-Alpes">
<name sortKey="Gonzalez, J F" sort="Gonzalez, J F" uniqKey="Gonzalez J" first="J.-F." last="Gonzalez">J.-F. Gonzalez</name>
</region>
<name sortKey="Menard, F" sort="Menard, F" uniqKey="Menard F" first="F." last="Menard">F. Menard</name>
<name sortKey="Pinte, C" sort="Pinte, C" uniqKey="Pinte C" first="C." last="Pinte">C. Pinte</name>
</country>
<country name="Australie">
<noRegion>
<name sortKey="Maddison, S T" sort="Maddison, S T" uniqKey="Maddison S" first="S. T." last="Maddison">S. T. Maddison</name>
</noRegion>
</country>
<country name="Suisse">
<region name="Canton de Berne">
<name sortKey="Fouchet, L" sort="Fouchet, L" uniqKey="Fouchet L" first="L." last="Fouchet">L. Fouchet</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 005998 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 005998 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     Pascal:13-0057302
   |texte=   Planet gaps in the dust layer of 3D protoplanetary disks: II. Observability with ALMA
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024